Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

### 5-[(4,6-Dimethylpyrimidin-2-ylsulfanyl)methyl]-3-(morpholinomethyl)-1,3,4oxadiazole-2(3*H*)-thione

## A. Thiruvalluvar,<sup>a</sup>\* M. Subramanyam,<sup>a</sup> B. Lingappa<sup>b</sup> and Balakrishna Kalluraya<sup>b</sup>

<sup>a</sup>PG Research Department of Physics, Rajah Serfoji Government College (Autonomous), Thanjavur 613 005, Tamil Nadu, India, and <sup>b</sup>Department of Studies in Chemistry, Mangalore University, Mangalagangothri 574 199, Karnataka, India Correspondence e-mail: athiru@vsnl.net

Received 2 July 2007; accepted 3 July 2007

Key indicators: single-crystal X-ray study; T = 160 K; mean  $\sigma$ (C–C) = 0.004 Å; R factor = 0.057; wR factor = 0.177; data-to-parameter ratio = 24.7.

In the title compound,  $C_{14}H_{19}N_5O_2S_2$ , the pyrimidine ring makes a dihedral angle of 82.8 (1)° with the oxadiazole ring. The morpholine ring adopts a chair conformation. There is a short intermolecular contact between the morpholine O atom and the sulfanylmethyl C atom [2.938 (3) Å]. The molecules are linked by  $C-H \cdots S$  hydrogen bonds. An intramolecular  $C-H \cdots N$  hydrogen bond is also present.

#### **Related literature**

For related literature, see: Wichmann *et al.* (1999); El-Bendary *et al.* (1998); Kirpal (1999); Tsuji & Ishikawa (1994); Mohan *et al.* (1989); Baraldi *et al.* (1996, 2003); Sanjay *et al.* (2006); Thiruvalluvar *et al.* (2007*a*,*b*).



#### **Experimental**

Crystal data  $C_{14}H_{19}N_5O_2S_2$   $M_r = 353.48$ Triclinic,  $P\overline{1}$  a = 7.1250 (3) Å b = 10.6735 (3) Å c = 12.3740 (5) Å  $\alpha = 93.607$  (2)°  $\beta = 90.561$  (2)°

 $\gamma = 107.474 \ (2)^{\circ}$   $V = 895.42 \ (6) \text{ Å}^3$  Z = 2Mo K $\alpha$  radiation  $\mu = 0.31 \text{ mm}^{-1}$   $T = 160 \ (1) \text{ K}$  $0.28 \times 0.23 \times 0.20 \text{ mm}$ 

#### Data collection

| Nonius KappaCCD area-detector          | 25642 measured reflections             |
|----------------------------------------|----------------------------------------|
| diffractometer                         | 5188 independent reflections           |
| Absorption correction: multi-scan      | 3963 reflections with $I > 2\sigma(I)$ |
| (Blessing, 1995)                       | $R_{\rm int} = 0.062$                  |
| $T_{\min} = 0.892, \ T_{\max} = 0.964$ |                                        |
|                                        |                                        |

Refinement

| $R[F^2 > 2\sigma(F^2)] = 0.057$ | 210 parameters                                             |
|---------------------------------|------------------------------------------------------------|
| $wR(F^2) = 0.177$               | H-atom parameters constrained                              |
| S = 1.06                        | $\Delta \rho_{\rm max} = 1.98 \text{ e} \text{ Å}^{-3}$    |
| 5188 reflections                | $\Delta \rho_{\rm min} = -0.42 \ {\rm e} \ {\rm \AA}^{-3}$ |

#### Table 1

| Hydrogen-l | bond geomet | ry (A, °) |
|------------|-------------|-----------|
| 2 0        |             | ~ ~ / /   |

| $D-H\cdots A$                                      | D-H  | $H \cdots A$ | $D \cdots A$ | $D - \mathbf{H} \cdots A$ |
|----------------------------------------------------|------|--------------|--------------|---------------------------|
| $C21 - H21A \cdots N13$ $C21 - H21B \cdots S5^{i}$ | 0.99 | 2.28         | 2.883 (3)    | 118                       |
|                                                    | 0.99 | 2.84         | 3.632 (2)    | 137                       |

Symmetry code: (i) x - 1, y, z.

Data collection: *COLLECT* (Nonius, 2000); cell refinement: *DENZO-SMN* (Otwinowski & Minor, 1997); data reduction: *DENZO-SMN* and *SCALEPACK* (Otwinowski & Minor, 1997); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP-3* (Farrugia, 1997); software used to prepare material for publication: *PLATON* (Spek, 2003).

The data collection was carried out by Dr A. Linden of the Institute of Organic Chemistry at the University of Zürich; this help is gratefully acknowledged by AT.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WN2165).

#### References

- Baraldi, P. G., Cacciari, B. & Spalluto, G. (1996). J. Med. Chem. 39, 1164–1169.
- Baraldi, P. G., Fruttarolo, F., Tabrizi, M. A., Preti, D., Romagnoli, H., El-Kashef, H., Moorman, A., Varani, K., Gessi, S., Merighi, S. & Borea, P. A. (2003). J. Med. Chem. 46, 1229–01233.
- Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
- El-Bendary, E. R., El-Sherbeny, M. A. & Badri, F. A. (1998). *Boll. Chim. Farm.* **137**, 115–121.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Kirpal, G. (1999). US Patent 5 869 494; Chem. Abstr. 130, 163202.
- Mohan, J., Anjaneyulu, G. S. R. & Verma, P. (1989). Curr. Sci. 58, 1028–1031.
- Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Sanjay, K., Gyanendra, K., Mili, K., Avadhesha, S. & Namita, S. (2006). Synth. Commun. 36, 215–226.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Thiruvalluvar, A., Subramanyam, M., Kalluraya, B. & Lingappa, B. (2007a). Acta Cryst. E63, o2911.
- Thiruvalluvar, A., Subramanyam, M., Kalluraya, B. & Lingappa, B. (2007b). Acta Cryst. E63, 03362.
- Tsuji, K. & Ishikawa, H. (1994). Bioorg. Med. Chem. Lett. 4, 160-164.
- Wichmann, J., Koclzewskis, A. G., Vincent, M. & Woletring, T. (1999). Bioorg. Med. Chem. Lett. 9, 1573–1579.

#### Acta Cryst. (2007). E63, o3425 [doi:10.1107/S1600536807032448]

# 5-[(4,6-Dimethylpyrimidin-2-ylsulfanyl)methyl]-3-(morpholinomethyl)-1,3,4-oxadiazole-2(3*H*)-thione

#### A. Thiruvalluvar, M. Subramanyam, B. Lingappa and B. Kalluraya

#### Comment

A literature survey shows that large numbers of simple, N-bridged, nitrogen- and sulfur-containing heterocyclic compounds containing the pyrimidine unit have diverse biological activities (Wichmann *et al.*, 1999; El-Bendary *et al.*, 1998; Kirpal, 1999; Tsuji & Ishikawa, 1994). In the light of this significant importance of pyrimidine compounds, and as a continuation of our work on the study of pyrimidine derivatives (Thiruvalluvaret al., 2007*a*,b), an X-ray crystallographic structure determination of the title compound was undertaken and the results are presented here.

In the title compound, Fig.1, the pyrimidine ring makes a dihedral angle of 82.8 (1)° with the oxadiazole ring. The morpholine ring adopts a chair conformation. There is a short intermolecular contact between O21 and C2 [2.938 (3) Å; -x, -y, -z + 1]. The molecules are linked by C—H…S hydrogen bonds (Fig. 2); an intramolecular C—H…N hydrogen bond is also present.

#### Experimental

A solution of 5-(4,6-dimethyl-2-thiomethyl pyrimidyl)-1,3,4-oxadiazole-2-thione (2.56 g, 0.01 mol) in absolute ethanol (20 ml) was placed in a round-bottomed flask and treated with formaldehyde (40%, 3.0 ml). Later, morpholine (0.87 g, 0.01 mol) in ethanol (10 ml) was added with stirring and the reaction mixture was stirred overnight. The precipitated yellow solid was collected by filtration, dried and recrystallized from chloroform to give white crystals (1.64 g, 46%).

#### Refinement

H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.95, 0.98 and 0.99 Å for  $Csp^2$ , methyl and methylene, respectively.  $U_{iso}(H) = xU_{eq}(C)$ , where x = 1.5 for methyl and 1.2 for all other H atoms. The maximum residual electron-density peak is located 2.79 Å from atom H23B.

#### **Figures**



Fig. 1. The molecular structure of the title compound, showing the atom-numbering scheme and displacement ellipsoids drawn at the 50% probability level.



Fig. 2. The packing of the title compound, viewed down the c axis. Dashed lines indicate hydrogen bonds.

#### 5-[(4,6-Dimethylpyrimidin-2-ylsulfanyl)methyl]-3-(morpholinomethyl)-1,3,4- oxadiazole-2(3H)-thione

| Crystal data                     |                                                 |
|----------------------------------|-------------------------------------------------|
| $C_{14}H_{19}N_5O_2S_2$          | Z = 2                                           |
| $M_r = 353.48$                   | $F_{000} = 372$                                 |
| Triclinic, $P\overline{1}$       | $D_{\rm x} = 1.311 {\rm Mg m}^{-3}$             |
| Hall symbol: -P 1                | Melting point: 378(1) K                         |
| a = 7.1250 (3)  Å                | Mo $K\alpha$ radiation<br>$\lambda = 0.71073$ Å |
| b = 10.6735 (3) Å                | Cell parameters from 32939 reflections          |
| c = 12.3740 (5)  Å               | $\theta = 2.0 - 30.0^{\circ}$                   |
| $\alpha = 93.607 \ (2)^{\circ}$  | $\mu = 0.31 \text{ mm}^{-1}$                    |
| $\beta = 90.561 \ (2)^{\circ}$   | T = 160 (1)  K                                  |
| $\gamma = 107.474 \ (2)^{\circ}$ | Block, light_brown                              |
| V = 895.42 (6) Å <sup>3</sup>    | $0.28 \times 0.23 \times 0.20 \text{ mm}$       |

#### Data collection

| Nonius KappaCCD area-detector diffractometer              | 5188 independent reflections           |
|-----------------------------------------------------------|----------------------------------------|
| Radiation source: Nonius FR590 sealed tube generat-<br>or | 3963 reflections with $I > 2\sigma(I)$ |
| Monochromator: horizontally mounted graphite crystal      | $R_{\text{int}} = 0.062$               |
| Detector resolution: 9 pixels mm <sup>-1</sup>            | $\theta_{\text{max}} = 30.0^{\circ}$   |
| T = 160(1)  K                                             | $\theta_{\min} = 2.0^{\circ}$          |
| $\phi$ and $\omega$ scans with $\kappa$ offsets           | $h = -10 \rightarrow 10$               |
| Absorption correction: multi-scan<br>(Blessing, 1995)     | $k = -15 \rightarrow 15$               |
| $T_{\min} = 0.892, \ T_{\max} = 0.964$                    | $l = -17 \rightarrow 17$               |
| 25642 measured reflections                                |                                        |

#### Refinement

Refinement on  $F^2$ 

Secondary atom site location: difference Fourier map

| Least-squares matrix: full                                     | Hydrogen site location: inferred from neighbouring sites                            |
|----------------------------------------------------------------|-------------------------------------------------------------------------------------|
| $R[F^2 > 2\sigma(F^2)] = 0.057$                                | H-atom parameters constrained                                                       |
| $wR(F^2) = 0.177$                                              | $w = 1/[\sigma^2(F_o^2) + (0.0975P)^2 + 0.7899P]$<br>where $P = (F_o^2 + 2F_c^2)/3$ |
| S = 1.06                                                       | $(\Delta/\sigma)_{\text{max}} < 0.001$                                              |
| 5188 reflections                                               | $\Delta \rho_{\text{max}} = 1.98 \text{ e} \text{ Å}^{-3}$                          |
| 210 parameters                                                 | $\Delta \rho_{\text{min}} = -0.42 \text{ e } \text{\AA}^{-3}$                       |
| Primary atom site location: structure-invariant direct methods | Extinction correction: none                                                         |

#### Special details

**Experimental**. Solvent used: Chloroform Cooling Device: Oxford Cryosystems Cryostream 700 Crystal mount: glued on a glass fibre Mosaicity (°.): 1.041 (2) Frames collected: 408 Seconds exposure per frame: 44 Degrees rotation per frame: 2.0 Crystal-Detector distance (mm): 32.0

**Geometry**. Bond distances, angles *etc.* have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on  $F^2$ , conventional *R*-factors *R* are based on F, with F set to zero for negative  $F^2$ . The threshold expression of  $F^2 > 2 \operatorname{sigma}(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

|     | x           | У             | Ζ            | $U_{\rm iso}^{*}/U_{\rm eq}$ |
|-----|-------------|---------------|--------------|------------------------------|
| S5  | 0.62058 (8) | 0.31119 (6)   | 0.52324 (5)  | 0.02696 (16)                 |
| S21 | 0.20019 (9) | 0.59892 (5)   | 0.76795 (4)  | 0.02255 (15)                 |
| 01  | 0.3493 (2)  | 0.38961 (15)  | 0.63170 (13) | 0.0208 (3)                   |
| O21 | -0.0632 (3) | -0.12209 (17) | 0.34104 (17) | 0.0383 (5)                   |
| N3  | 0.1046 (3)  | 0.36310 (18)  | 0.51156 (15) | 0.0197 (4)                   |
| N4  | 0.2574 (3)  | 0.32370 (17)  | 0.46596 (14) | 0.0186 (4)                   |
| N11 | 0.3236 (3)  | 0.65029 (19)  | 0.96765 (15) | 0.0222 (4)                   |
| N13 | 0.1632 (3)  | 0.42186 (19)  | 0.91862 (15) | 0.0229 (4)                   |
| N24 | 0.1471 (3)  | 0.14660 (18)  | 0.32052 (15) | 0.0222 (4)                   |
| C2  | 0.1660 (3)  | 0.3999 (2)    | 0.60967 (17) | 0.0190 (4)                   |
| C4  | 0.2486 (3)  | 0.2826 (2)    | 0.34962 (17) | 0.0216 (4)                   |
| H4A | 0.1837      | 0.3370        | 0.3103       | 0.026*                       |
| H4B | 0.3849      | 0.3022        | 0.3241       | 0.026*                       |
| C5  | 0.4063 (3)  | 0.3393 (2)    | 0.53748 (18) | 0.0197 (4)                   |
| C12 | 0.2297 (3)  | 0.5477 (2)    | 0.89887 (18) | 0.0201 (4)                   |
| C14 | 0.1957 (3)  | 0.3923 (2)    | 1.02001 (19) | 0.0249 (5)                   |
| C15 | 0.2942 (4)  | 0.4908 (3)    | 1.09725 (19) | 0.0264 (5)                   |
| H15 | 0.3198      | 0.4700        | 1.1683       | 0.032*                       |
| C16 | 0.3544 (3)  | 0.6198 (2)    | 1.06892 (19) | 0.0248 (5)                   |
| C21 | 0.0579 (3)  | 0.4458 (2)    | 0.69701 (19) | 0.0240 (5)                   |
|     |             |               |              |                              |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(A^2)$ 

| 0.0182      | 0.3772                                                                                                                                                                                                                                                   | 0.7497                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.029*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| -0.0634     | 0.4576                                                                                                                                                                                                                                                   | 0.6656                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.029*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0.1393 (5)  | -0.0825 (3)                                                                                                                                                                                                                                              | 0.3129 (3)                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0404 (7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 0.1482      | -0.0860                                                                                                                                                                                                                                                  | 0.2330                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.048*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0.2040      | -0.1448                                                                                                                                                                                                                                                  | 0.3405                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.048*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0.2460 (4)  | 0.0553 (2)                                                                                                                                                                                                                                               | 0.3594 (2)                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0291 (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 0.2458      | 0.0582                                                                                                                                                                                                                                                   | 0.4395                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.035*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0.3845      | 0.0812                                                                                                                                                                                                                                                   | 0.3367                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.035*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| -0.0601 (4) | 0.1057 (2)                                                                                                                                                                                                                                               | 0.3506 (2)                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0279 (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| -0.1274     | 0.1662                                                                                                                                                                                                                                                   | 0.3224                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.033*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| -0.0688     | 0.1093                                                                                                                                                                                                                                                   | 0.4305                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.033*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| -0.1592 (4) | -0.0334 (2)                                                                                                                                                                                                                                              | 0.3035 (2)                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0363 (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| -0.2986     | -0.0615                                                                                                                                                                                                                                                  | 0.3245                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.044*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| -0.1564     | -0.0354                                                                                                                                                                                                                                                  | 0.2235                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.044*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0.1210 (5)  | 0.2502 (3)                                                                                                                                                                                                                                               | 1.0433 (2)                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0370 (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| -0.0183     | 0.2282                                                                                                                                                                                                                                                   | 1.0612                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.056*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0.1967      | 0.2341                                                                                                                                                                                                                                                   | 1.1046                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.056*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0.1356      | 0.1953                                                                                                                                                                                                                                                   | 0.9794                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.056*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0.4595 (4)  | 0.7317 (3)                                                                                                                                                                                                                                               | 1.1477 (2)                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0331 (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 0.5980      | 0.7349                                                                                                                                                                                                                                                   | 1.1552                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.050*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0.3981      | 0.7189                                                                                                                                                                                                                                                   | 1.2183                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.050*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0.4512      | 0.8146                                                                                                                                                                                                                                                   | 1.1213                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.050*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|             | 0.0182<br>-0.0634<br>0.1393 (5)<br>0.1482<br>0.2040<br>0.2460 (4)<br>0.2458<br>0.3845<br>-0.0601 (4)<br>-0.1274<br>-0.0688<br>-0.1592 (4)<br>-0.2986<br>-0.1564<br>0.1210 (5)<br>-0.0183<br>0.1967<br>0.1356<br>0.4595 (4)<br>0.5980<br>0.3981<br>0.4512 | 0.0182 $0.3772$ $-0.0634$ $0.4576$ $0.1393 (5)$ $-0.0825 (3)$ $0.1482$ $-0.0860$ $0.2040$ $-0.1448$ $0.2460 (4)$ $0.0553 (2)$ $0.2458$ $0.0582$ $0.3845$ $0.0812$ $-0.0601 (4)$ $0.1057 (2)$ $-0.1274$ $0.1662$ $-0.0688$ $0.1093$ $-0.1592 (4)$ $-0.0334 (2)$ $-0.1564$ $-0.0354$ $0.1210 (5)$ $0.2282$ $0.1967$ $0.2341$ $0.1356$ $0.1953$ $0.4595 (4)$ $0.7317 (3)$ $0.5980$ $0.7349$ $0.3981$ $0.7189$ $0.4512$ $0.8146$ | 0.01820.37720.7497-0.06340.45760.66560.1393 (5)-0.0825 (3)0.3129 (3)0.1482-0.08600.23300.2040-0.14480.34050.2460 (4)0.0553 (2)0.3594 (2)0.24580.05820.43950.38450.08120.3367-0.0601 (4)0.1057 (2)0.3506 (2)-0.12740.16620.3224-0.06880.10930.4305-0.1592 (4)-0.0334 (2)0.3035 (2)-0.2986-0.06150.3245-0.1564-0.03540.22350.1210 (5)0.2502 (3)1.0433 (2)-0.01830.22821.06120.19670.23411.10460.13560.19530.97940.4595 (4)0.7317 (3)1.1477 (2)0.59800.73491.15520.39810.71891.21830.45120.81461.1213 |

### Atomic displacement parameters $(\text{\AA}^2)$

|            | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$     | $U^{23}$     |
|------------|-------------|-------------|-------------|--------------|--------------|--------------|
| <b>S</b> 5 | 0.0179 (3)  | 0.0328 (3)  | 0.0311 (3)  | 0.0095 (2)   | -0.0032 (2)  | 0.0001 (2)   |
| S21        | 0.0281 (3)  | 0.0208 (3)  | 0.0185 (3)  | 0.0072 (2)   | -0.0025 (2)  | 0.0004 (2)   |
| 01         | 0.0184 (7)  | 0.0226 (8)  | 0.0208 (7)  | 0.0057 (6)   | -0.0044 (6)  | -0.0001 (6)  |
| O21        | 0.0448 (12) | 0.0190 (8)  | 0.0464 (12) | 0.0026 (8)   | -0.0080 (9)  | 0.0037 (8)   |
| N3         | 0.0181 (9)  | 0.0188 (8)  | 0.0221 (9)  | 0.0058 (7)   | -0.0028 (7)  | -0.0006 (7)  |
| N4         | 0.0172 (8)  | 0.0188 (8)  | 0.0190 (8)  | 0.0049 (7)   | -0.0022 (7)  | -0.0005 (7)  |
| N11        | 0.0217 (9)  | 0.0246 (9)  | 0.0206 (9)  | 0.0079 (7)   | -0.0019 (7)  | -0.0015 (7)  |
| N13        | 0.0237 (9)  | 0.0229 (9)  | 0.0230 (9)  | 0.0079 (8)   | 0.0014 (7)   | 0.0025 (7)   |
| N24        | 0.0278 (10) | 0.0179 (9)  | 0.0186 (9)  | 0.0040 (7)   | -0.0031 (7)  | 0.0004 (7)   |
| C2         | 0.0171 (9)  | 0.0181 (9)  | 0.0206 (10) | 0.0036 (8)   | -0.0042 (7)  | 0.0016 (8)   |
| C4         | 0.0261 (11) | 0.0197 (10) | 0.0168 (10) | 0.0034 (8)   | -0.0007 (8)  | 0.0032 (8)   |
| C5         | 0.0189 (10) | 0.0161 (9)  | 0.0220 (10) | 0.0020 (7)   | -0.0031 (8)  | 0.0021 (8)   |
| C12        | 0.0172 (10) | 0.0226 (10) | 0.0214 (10) | 0.0079 (8)   | 0.0001 (8)   | 0.0002 (8)   |
| C14        | 0.0248 (11) | 0.0284 (11) | 0.0248 (11) | 0.0122 (9)   | 0.0051 (9)   | 0.0048 (9)   |
| C15        | 0.0274 (12) | 0.0357 (13) | 0.0186 (10) | 0.0131 (10)  | 0.0014 (8)   | 0.0037 (9)   |
| C16        | 0.0221 (11) | 0.0312 (12) | 0.0221 (11) | 0.0103 (9)   | -0.0010 (8)  | -0.0029 (9)  |
| C21        | 0.0202 (10) | 0.0269 (11) | 0.0230 (11) | 0.0052 (9)   | -0.0024 (8)  | -0.0031 (9)  |
| C22        | 0.0482 (17) | 0.0235 (12) | 0.0502 (17) | 0.0136 (12)  | -0.0034 (13) | -0.0040 (11) |
| C23        | 0.0299 (12) | 0.0226 (11) | 0.0357 (13) | 0.0094 (9)   | -0.0021 (10) | 0.0011 (9)   |
| C25        | 0.0254 (12) | 0.0212 (11) | 0.0337 (13) | 0.0024 (9)   | -0.0076 (9)  | 0.0010 (9)   |
| C26        | 0.0359 (14) | 0.0227 (12) | 0.0433 (15) | -0.0009 (10) | -0.0145 (12) | 0.0013 (10)  |
| C41        | 0.0491 (17) | 0.0289 (13) | 0.0345 (14) | 0.0125 (12)  | 0.0068 (12)  | 0.0091 (11)  |

| C61                    | 0.0383 (14)  | 0.0373 (14)          | 0.0218 (12) | 0.0106 (11)             | -0.0063 (10) | -0.0071 (10) |
|------------------------|--------------|----------------------|-------------|-------------------------|--------------|--------------|
| Cometric name          | natour (Å 9) |                      |             |                         |              |              |
| Geometric paran        | neiers (A, ) |                      |             |                         |              |              |
| S5—C5                  |              | 1.651 (2)            | C16-        | C61                     | 1.4          | .97 (4)      |
| S21—C12                |              | 1.772 (2)            | C22-        | C23                     | 1.5          | 12 (4)       |
| S21—C21                |              | 1.810 (2)            | C25-        | C26                     | 1.5          | 15 (4)       |
| 01—C2                  |              | 1.369 (3)            | C4—         | -H4A                    | 0.9          | 900          |
| 01 - 05                |              | 1.369 (3)            | C4          | -H4B                    | 0.9          | 900          |
| 021 - C22              |              | 1.430 (4)            | C15-        | —HIS<br>H21A            | 0.9          | 000          |
| N3_N4                  |              | 1.421(4)<br>1.302(3) | C21-        | H21R<br>H21B            | 0.9          | 900          |
| N3_C2                  |              | 1.392(3)<br>1.283(3) | C21-        | —H21В<br>_H22Δ          | 0.9          | 900          |
| N3 C2<br>N4—C4         |              | 1.203(3)<br>1 473(3) | C22         | -H22R<br>H22B           | 0.9          | 900          |
| N4—C5                  |              | 1.339 (3)            | C23-        | -H23A                   | 0.9          | 900          |
| N11—C12                |              | 1.343 (3)            | C23-        | —Н23В                   | 0.9          | 900          |
| N11—C16                |              | 1.347 (3)            | C25-        | —Н25А                   | 0.9          | 900          |
| N13—C12                |              | 1.323 (3)            | C25-        | —Н25В                   | 0.9          | 900          |
| N13—C14                |              | 1.347 (3)            | C26-        | —H26A                   | 0.9          | 900          |
| N24—C4                 |              | 1.435 (3)            | C26-        | —H26B                   | 0.9          | 900          |
| N24—C23                |              | 1.464 (3)            | C41-        | —H41A                   | 0.9          | 800          |
| N24—C25                |              | 1.467 (4)            | C41-        | —H41B                   | 0.9          | 800          |
| C2—C21                 |              | 1.476 (3)            | C41-        | H41C                    | 0.9          | 800          |
| C14—C15                |              | 1.389 (4)            | C61-        | H61A                    | 0.9          | 800          |
| CI4—C41                |              | 1.497 (4)            | C61-        | H61B                    | 0.9          | 800          |
| C15—C16                |              | 1.382 (4)            | C61-        | —Н61С                   | 0.9          | 800          |
| S5…N3 <sup>1</sup>     |              | 3.331 (2)            | C23·        | C5                      | 3.5          | 19 (3)       |
| S5…C21 <sup>1</sup>    |              | 3.632 (2)            | C25-        | ···N3                   | 3.1          | 97 (3)       |
| S5…C23                 |              | 3.676 (2)            | C26-        | ···C61 <sup>x</sup>     | 3.5          | 47 (4)       |
| S5…C2 <sup>ii</sup>    |              | 3.521 (2)            | C61·        | ···C26 <sup>xi</sup>    | 3.5          | 47 (4)       |
| S5…N3 <sup>ii</sup>    |              | 3.496 (2)            | C4…         | H15 <sup>ix</sup>       | 3.0          | 400          |
| S21…O1                 |              | 3.1542 (16)          | C4…         | H41B <sup>ix</sup>      | 3.0          | 400          |
| $S5 \cdots H21B^{i}$   |              | 2.8400               | C5…         | H23A                    | 3.0          | 400          |
| S5…H4B                 |              | 2.9500               | C14·        | ···H61A <sup>viii</sup> | 3.1          | 000          |
| S5…H22B <sup>iii</sup> |              | 3.0400               | C22·        | ···H21A <sup>v</sup>    | 3.0          | 500          |
| S21…H4A <sup>iv</sup>  |              | 3.1700               | C26-        | ···H61A <sup>x</sup>    | 3.0          | 500          |
| S21…H4B <sup>ii</sup>  |              | 3.0800               | H4A         | ····H15 <sup>ix</sup>   | 2.3          | 600          |
| S21…H25A <sup>iv</sup> |              | 2.9900               | H4A         | ····H25A                | 2.4          | 200          |
| O1…S21                 |              | 3.1542 (16)          | H4A         | ····S21 <sup>iv</sup>   | 3.1          | 700          |
| O1…N4                  |              | 2.155 (2)            | H4A         | ····H21B <sup>iv</sup>  | 2.5          | 800          |
| 01…O21 <sup>v</sup>    |              | 3.010 (2)            | H4B         | ···S5                   | 2.9          | 500          |
| O21…N24                |              | 2.838 (3)            | H4B         | ···H23B                 | 2.3          | 700          |
| $O21 \cdots O1^{v}$    |              | 3.010 (2)            | H4B         | ···S21 <sup>ii</sup>    | 3.0          | 800          |
| $O21 \cdots N3^{v}$    |              | 3.190 (3)            | H15         | ····C4 <sup>xii</sup>   | 3.0          | 400          |
| $O21 \cdots C2^{v}$    |              | 2.938 (3)            | H15         | ···H4A <sup>xii</sup>   | 2.3          | 600          |

| O21···C5 <sup>v</sup>      | 3.274 (3)   | H15…H41B                    | 2.4800 |
|----------------------------|-------------|-----------------------------|--------|
| N3····S5 <sup>vi</sup>     | 3.331 (2)   | H15…H61B                    | 2.5800 |
| N3…O1                      | 2.220 (3)   | H21A…N13                    | 2.2800 |
| N3…N24                     | 3.281 (3)   | H21A···C22 <sup>v</sup>     | 3.0500 |
| N3…C25                     | 3.197 (3)   | H21B…S5 <sup>vi</sup>       | 2.8400 |
| N3···S5 <sup>ii</sup>      | 3.496 (2)   | H21B…H4A <sup>iv</sup>      | 2.5800 |
| N3…O21 <sup>v</sup>        | 3.190 (3)   | H22A…H26B                   | 2.3900 |
| N4…O1                      | 2.155 (2)   | H22B····S5 <sup>iii</sup>   | 3.0400 |
| N24…O21                    | 2.838 (3)   | H23A…N4                     | 2.8100 |
| N24…N3                     | 3.281 (3)   | H23A…C5                     | 3.0400 |
| N3…H25B                    | 2.7400      | H23A…H25B                   | 2.4600 |
| N4…H25B                    | 2.7400      | H23A…H25B <sup>v</sup>      | 2.5300 |
| N4…H23A                    | 2.8100      | H23B…H4B                    | 2.3700 |
| N11···H41A <sup>vii</sup>  | 2.8800      | H25A…H4A                    | 2.4200 |
| N13···H61A <sup>viii</sup> | 2.8400      | H25A…S21 <sup>iv</sup>      | 2.9900 |
| N13…H21A                   | 2.2800      | H25B…N3                     | 2.7400 |
| N24···H41B <sup>ix</sup>   | 2.8800      | H25B…N4                     | 2.7400 |
| C2···S5 <sup>ii</sup>      | 3.521 (2)   | H25B…H23A                   | 2.4600 |
| C2…O21 <sup>v</sup>        | 2.938 (3)   | H25B···H23A <sup>v</sup>    | 2.5300 |
| C5…O21 <sup>v</sup>        | 3.274 (3)   | H26B…H22A                   | 2.3900 |
| C5…C23                     | 3.519 (3)   | H41A…N11 <sup>vii</sup>     | 2.8800 |
| C5···C5 <sup>ii</sup>      | 3.476 (3)   | H41B…N24 <sup>xii</sup>     | 2.8800 |
| C12···C15 <sup>viii</sup>  | 3.538 (4)   | H41B…C4 <sup>xii</sup>      | 3.0400 |
| C12···C14 <sup>vii</sup>   | 3.428 (3)   | H41B…H15                    | 2.4800 |
| C14···C12 <sup>vii</sup>   | 3.428 (3)   | H41C…H61A <sup>viii</sup>   | 2.5100 |
| C14···C16 <sup>viii</sup>  | 3.436 (3)   | H61A…C26 <sup>xi</sup>      | 3.0500 |
| C15…C12 <sup>viii</sup>    | 3.538 (4)   | H61A…N13 <sup>viii</sup>    | 2.8400 |
| C16…C14 <sup>viii</sup>    | 3.436 (3)   | H61A…C14 <sup>viii</sup>    | 3.1000 |
| C21····S5 <sup>vi</sup>    | 3.632 (2)   | H61A···H41C <sup>viii</sup> | 2.5100 |
| C23…S5                     | 3.676 (2)   | H61B…H15                    | 2.5800 |
| C12—S21—C21                | 101.70 (10) | C14—C15—H15                 | 121.00 |
| C2—O1—C5                   | 105.80 (17) | C16—C15—H15                 | 121.00 |
| C22—O21—C26                | 110.5 (2)   | S21—C21—H21A                | 109.00 |
| N4—N3—C2                   | 103.32 (19) | S21—C21—H21B                | 109.00 |
| N3—N4—C4                   | 120.00 (18) | C2—C21—H21A                 | 109.00 |
| N3—N4—C5                   | 111.76 (17) | C2—C21—H21B                 | 109.00 |
| C4—N4—C5                   | 128.0 (2)   | H21A—C21—H21B               | 108.00 |
| C12—N11—C16                | 115.25 (19) | O21—C22—H22A                | 109.00 |
| C12—N13—C14                | 116.15 (19) | O21—C22—H22B                | 109.00 |
| C4—N24—C23                 | 114.03 (19) | C23—C22—H22A                | 109.00 |
| C4—N24—C25                 | 113.83 (18) | C23—C22—H22B                | 109.00 |
| C23—N24—C25                | 110.01 (18) | H22A—C22—H22B               | 108.00 |
| O1—C2—N3                   | 113.6 (2)   | N24—C23—H23A                | 110.00 |
| O1—C2—C21                  | 119.51 (18) | N24—C23—H23B                | 110.00 |

| N3—C2—C21       | 126.8 (2)    | С22—С23—Н23А    | 110.00      |
|-----------------|--------------|-----------------|-------------|
| N4—C4—N24       | 115.98 (17)  | С22—С23—Н23В    | 110.00      |
| S5-C5-O1        | 123.87 (16)  | H23A—C23—H23B   | 108.00      |
| S5-C5-N4        | 130.65 (18)  | N24—C25—H25A    | 110.00      |
| O1—C5—N4        | 105.47 (18)  | N24—C25—H25B    | 110.00      |
| S21—C12—N11     | 111.36 (15)  | С26—С25—Н25А    | 110.00      |
| S21—C12—N13     | 120.50 (17)  | С26—С25—Н25В    | 110.00      |
| N11—C12—N13     | 128.1 (2)    | H25A—C25—H25B   | 108.00      |
| N13—C14—C15     | 120.4 (2)    | O21—C26—H26A    | 109.00      |
| N13—C14—C41     | 116.6 (2)    | O21—C26—H26B    | 109.00      |
| C15—C14—C41     | 123.0 (2)    | C25—C26—H26A    | 109.00      |
| C14—C15—C16     | 118.9 (2)    | С25—С26—Н26В    | 109.00      |
| N11—C16—C15     | 121.1 (2)    | H26A—C26—H26B   | 108.00      |
| N11—C16—C61     | 116.7 (2)    | C14—C41—H41A    | 109.00      |
| C15—C16—C61     | 122.1 (2)    | C14—C41—H41B    | 109.00      |
| S21—C21—C2      | 113.27 (15)  | C14—C41—H41C    | 109.00      |
| O21—C22—C23     | 111.6 (3)    | H41A—C41—H41B   | 109.00      |
| N24—C23—C22     | 109.2 (2)    | H41A—C41—H41C   | 109.00      |
| N24—C25—C26     | 109.3 (2)    | H41B—C41—H41C   | 110.00      |
| O21—C26—C25     | 111.0 (2)    | C16—C61—H61A    | 109.00      |
| N4—C4—H4A       | 108.00       | С16—С61—Н61В    | 109.00      |
| N4—C4—H4B       | 108.00       | С16—С61—Н61С    | 109.00      |
| N24—C4—H4A      | 108.00       | H61A—C61—H61B   | 109.00      |
| N24—C4—H4B      | 108.00       | H61A—C61—H61C   | 109.00      |
| H4A—C4—H4B      | 107.00       | H61B—C61—H61C   | 109.00      |
| C21—S21—C12—N11 | -176.28 (17) | C12—N11—C16—C15 | 0.8 (3)     |
| C21—S21—C12—N13 | 3.9 (2)      | C12—N11—C16—C61 | 179.8 (2)   |
| C12—S21—C21—C2  | -113.85 (17) | C14—N13—C12—S21 | 178.84 (17) |
| C5-01-C2-N3     | -0.9 (2)     | C14—N13—C12—N11 | -0.9 (4)    |
| C5—O1—C2—C21    | 177.15 (18)  | C12—N13—C14—C15 | -0.1 (3)    |
| C2-O1-C5-S5     | 179.02 (16)  | C12—N13—C14—C41 | 180.0 (2)   |
| C2-O1-C5-N4     | 0.4 (2)      | C23—N24—C4—N4   | -67.3 (3)   |
| C26—O21—C22—C23 | 58.3 (3)     | C25—N24—C4—N4   | 60.1 (3)    |
| C22—O21—C26—C25 | -58.4 (3)    | C4—N24—C23—C22  | -173.3 (2)  |
| C2—N3—N4—C4     | -175.71 (18) | C25—N24—C23—C22 | 57.4 (3)    |
| C2—N3—N4—C5     | -0.7 (2)     | C4—N24—C25—C26  | 172.7 (2)   |
| N4—N3—C2—O1     | 1.0 (2)      | C23—N24—C25—C26 | -57.9 (3)   |
| N4—N3—C2—C21    | -176.9 (2)   | O1—C2—C21—S21   | 51.9 (2)    |
| N3—N4—C4—N24    | -86.7 (2)    | N3—C2—C21—S21   | -130.3 (2)  |
| C5—N4—C4—N24    | 99.1 (3)     | N13-C14-C15-C16 | 1.4 (4)     |
| N3—N4—C5—S5     | -178.33 (17) | C41—C14—C15—C16 | -178.7 (3)  |
| N3—N4—C5—O1     | 0.1 (2)      | C14—C15—C16—N11 | -1.7 (4)    |
| C4—N4—C5—S5     | -3.8 (3)     | C14—C15—C16—C61 | 179.4 (2)   |
| C4—N4—C5—O1     | 174.69 (18)  | O21—C22—C23—N24 | -57.6 (3)   |
| C16—N11—C12—S21 | -179.21 (17) | N24—C25—C26—O21 | 58.4 (3)    |
| C16N11C12N13    | 0.6 (4)      |                 | . /         |

Symmetry codes: (i) x+1, y, z; (ii) -x+1, -y+1, -z+1; (iii) -x+1, -y, -z+1; (iv) -x, -y+1, -z+1; (v) -x, -y, -z+1; (vi) x-1, y, z; (vii) -x, -y+1, -z+2; (viii) -x+1, -y+1, -z+2; (ix) x, y, z-1; (x) x-1, y-1, z-1; (xi) x+1, y+1, z+1; (xii) x, y, z+1.

Hydrogen-bond geometry (Å, °)

| D—H···A                                  | <i>D</i> —Н | $H \cdots A$ | $D \cdots A$ | $D\!\!-\!\!\mathrm{H}^{\ldots}\!A$ |
|------------------------------------------|-------------|--------------|--------------|------------------------------------|
| C21—H21A…N13                             | 0.99        | 2.28         | 2.883 (3)    | 118                                |
| C21—H21B···S5 <sup>vi</sup>              | 0.99        | 2.84         | 3.632 (2)    | 137                                |
| Symmetry codes: (vi) $x-1$ , $y$ , $z$ . |             |              |              |                                    |





